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An Attitude Determination Algorithm for a Spacecraft
Using Nonlinear Filter

Yong Joong Yoon*, Jae Weon Choi**, Jang Gyu Lee*** and Tae Hyun Fang****
(Received April 22, 1998)

In this paper, the algorithm for a real time attitude estimation of a spacecraft motion is
investigated. The proposed algorithm for attitude estimation is the second order nonlinear filter
form not containing truncation error in estimation values. The proposed second order nonlinear
filter has improved performance compared with the EKF (extended Kalman filter), because the
algorithm does not contain any truncation bias and covariance of the estimator is compensated
by the nonlinear terms of the system. Therefore, the proposed second order nonlinear filter is a
suboptimal estimator. However, the proposed estimator requires a lot of computation because
of an inherent nonlinearity and complexity of the system model. For more efficient computation,
this paper introduces a new attitude estimation algorithm using the state divided technique for
a real time processing which is developed to provide an accurate attitude determination
capability under a highly maneuverable dynamic environment.

To compare the performance of the proposed algorithm with the EKF, simulations have been
performed with various initial values and measurement covariances. Simulation results show
that the proposed second order nonlinear algorithm outperforms the EKF. The proposed
algorithm is useful for a real time attitude estimation since it has better accuracy compared with

the EKF and requires less computing time compared with any existing nonlinear filters,

Key Words :

1. Introduction

The high maneuverability requirements of a
number of future three-axis slewing spacecraft,
when coupled with stringent attitude and pointing
accuracy requirements, demand new nonlinear
filters for determining spacecraft attitude func-
tion. Moreover, the attitude determination sen-
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sors, when operating under high and continuous
slew rates, acceleration, and jerk motions among
possibly all three axes of the spacecraft, may
introduce significant cross axis errors not other-
wise encountered (Yong and Headly, 1978 ; Zwar-
tbol, Van Den Dam, Terpstra, and Van Woerk-
kom, 1985; Vathsal, 1986, 1987). Another aspect
of consideration is that it should operate in a real
time on-board environment with only minimum
ground interface in the nominal operation mode
(Yong and Headly, 1978 ; Bar-Ttzhack and
Medan, 1983 ; Medan and Bar-Itzhack, 1985).
This requirement imposes restrictions on the
computational procedure of real time data reduc-
tion and processing. Based upon the above
requirements, we will introduce a real time on-
board precision attitude estimation to provide
accurate attitude determination capability under
the highly maneuverable dynamic environment.
The problem of the minimum variance estima-
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tion of the nonlinear system subjected to the
stochastic noise has been applied in a wide vari-
ety of engineering problems including spacecraft
attitude determination, orbit determination, space
vehicle navigation, and state estimation for state
vector control (Kau, Kumar and Granley, 1969 ;
Jazwinski, 1970 ; Sage and Melsa, 1971), The
estimation of a nonlinear system is governed by
the Fokker-Planck partial differential equation,
which can be derived either from the Chapman-
Kolmogorov equation or the Itd differential rule
(Jazwinski, 1970 ; Sage and Melsa, 1971). But,
because of the infinite dimensional nature of the
partial differential equation, the Fokker-Planck
equation is not directly solved in any practical
application. The solution of this problem necessi-
tates seeking a finite dimensional approximation
using Taylor series and Gaussian etc. (Jazwinski,
1970 ; Sage and Melsa, 1971),

Attitude information may use any sensor for
which the measured quantity depends solely on
the direction of some object in the sensor coordi-
nate system (Britting, 1971 ; Lefferts, Markley and
Shuster, 1982 ; LO, 1986). However, we assume
that two precision star trackers exist on the space-
craft in inertial sphcc since it is commonly used in
most practical applications in attitude estimation
of a spacecraft. The system concept for attitude
estimation is illustrated in the block diagram
shown in Fig. 1.

The spacecraft attitude model is represented by
a quaternion which is a second order nonlinear
system (Vathsal, 1986, 1987 ; LO, 1986). The

Fokker-Planck equation corresponding to its
model can be represented exactly, This paper
derives the attitude estimator from the Fokker-
Planck equation and the measurement model
where the nonlinear terms of measurement repre-
sent the measurement noise. We will show that
the proposed estimator for the spacecraft attitude
does not produce any truncation bias errors, and
the covariance of the estimator is compensated by
the nonlinear terms of the system. The proposed
estimator however requires a lot of computation
because of the inherent nonlinearity and complex-
ity of the system model for attitude. To reduce
computation, this paper introduces a new attitude
estimation algorithm using the state divided tech-
nique.

In the next section, a nonlinear measurement
model for a star sensor will be derived. In section
3, we will discuss the special features of the
propagation equation for a nonlinear attitude
filter. The measurement update equation will be
derived in section 4. In section 5, a new algorithm
for the spacecraft attitude estimation will be
developed. In section 6, we will discuss the simu-
lation results for the proposed algorithm. Finally,
in section 7, the main topics of the work will be
summarized.

2. Model of Measurement Sensors
The attitude sensors considered here are star

trackers, which are the most accurate in the
practical applications of filters for attitude estima-

Gyro Noise Star Tracker Noise
l Gyro Data l Star Data
u - & q
Gyro Model » Attitude Star Sensor »  Filter
Kinematics Model Algorithm
using | using |5
Quaternion "| Quaternion
Quaternion Matrix(q)
Attitude
Matrix

Fig. 1 Block diagram of the attitude estimation using the quaternion.
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tion (Heller, 1975). Therefore, it is assumed that
two precise star trackers exist on the spacecraft to
obtain accurate attitude measurements of the
spacecraft with respect to inertial space. The star
trackers attitude information, and
uniquely determine the sensed star unit vector in
the star local frame with respect to inertial space.
Between star sensor update intervals, an estima-

provide

tion of the spacecraft attitude is maintained by use
of three rate integrating gyros. The errors in gyro
output are bounded when the filter for attitude
estimation is innovated by the star sensor. The
measured value of a star sensor in body frame can
be written as Eg. (1) (Heller, 1975 ; Yong and
Headly, 1978).

z2=T Ass(g)Ast(@) oty (1)

where, Ag (¢) is the spacecraft attitude matrix,
Aps(ge) 1s the alignment matrix of the star
tracker, and p is star position vector in the refer-
ence coordinate system, and p’ is a random
noise vector due to the star catalog position errors
and star tracker output noise. The attitude matrix
with quaternion in Eg. (1) is a second order
nonlinear function. We will attempt measurement
reformulation which measurement noise impli-
cates nonlinearity of measurement. Thus, if we
replace the states x in the EFg. (1) with 4 Az,
then the measurement equation is rewritten as
follows:

2= TAps(qc) {As (£1) igi‘l”Hi(_‘ZCiu 0:) 4
+ Asr (Agx) z‘Bz’} +\Q;"E TAss(gc) {Asl (E_l) iRi
+Hi(£1, Qi) A£1}+Qi (2)
where, 7, is the first term of the estimated value
for 1, by Taylor series expansion, and

100
7=[g } o] e
0A i
Hig, py =208 o)
v=TAzs(qc) Ast (Zzl)ﬁi‘q‘y' (2c)

The redefined measurement noise in Eg. (2¢) is
not white Gaussian noise, but colored noise. In
Eg. (2¢), we let the elements of the star position
vector be p,., oy, and p,, respectively, then we can
obtain the stochastic mean value of the colored
measurement. That is,

E [Q] = TAs(q) E [Asr (d@)ﬁi]
= TABS(Qc)
{(pu— D= Pt Pae) P22 (Prz+ pae) py+2 (13— Pad) 02
2(pra=Das) pat (= put o= D3+ us) 06 T2 (pratpaa) oy
2{pra+pas) 02 T2 (b= bra) 0y (— pru—poz + pus+ Pad) 0
(3
where, p;; are the covariance elements correspond-
ing to state § and j. Also, the covariance R of
colored measurement noise can be calculated
from Eg. (2¢) and Eg. (3).

R=FE[w’]-E[v]E[v]"
= TAsps ((Ic) {E [ASI (A@)@TASI (1@1) T]
—A(P) po"A(P) "} Ass(qo) "TT+R (4)
The first term in Eg. (4) has only fourth-order
moment of state errors Jx. If we assume that state
errors Ay are Gaussi;n, then fourth order

moment generally has the relation among state as
Eg. (5) (Jazwinski, 1970).

E[dx:dz;Axedx] = papa+ pinpi+ prpys (5)
Therefore, applying Eg. (3) and Eg. (5) into
Eg. (4) brings Eq. (6) as follows:

R=TAzs(go){L(P\ p)}Ass(qe) "T"+ R’ (6)
where,

L(P, Q) =K [Asl (Arx_l)@’IASI (4@) T]
—A(P) pe"AP)T (7a)
Asi (Azl) =
dat— dxf— dxi+ dxd
2 (.41‘141'2— A.Z‘sd.n)

2 (ﬂxll‘z + 4.1'341‘4)
— Azt + dxs - Axi+ Axk

2(dxdas+ dxedzs)  2(dxedas— Az Azs)
2 (A.Z‘lﬂxs - dxzd.n)
2(Ax1dxs+ Az dxy) (7b)
— Azt — Axk+ Ax3 + Az}
A(P)=
Pu—pe—putpe  2(prtpa) 2 pus—poa)
2pe—pu)  —puthe—putda  2(putpn)
2(pist poa) 2oy~ pus) —pu—Dpatpatpu
(7¢)

Substituting Eg. (7b) and Eg. (7¢) in Eq. (7a)
gives
h he ha
L(P, P); by e loa (8a)
b b by
=1{2(ph+ phet phs+ phe) +4(— pla— pls+ pla
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+ pha— pha— pha) Yo+ 4 (puipee+ Pasput 1

2

+ D+ 2pispas+2pudes) Py + 4 (pupss+ b

+ phat 3~ 2p1apss— 2 praps) 05+ 8 (puprz
— Deepre— Paaban+ Paahsa— Paipat paae

+ Prapra= Paspes) P20y + 8 (Prpia~ puapra
+ Deepoa— puubar— pubast pupa— przbu

+ pazpns) Pzpz+8 (Pripea— Deapra+ paapra

— paapest Prapra— parpeat Prapss— Pazbas) PuOz
(8b)

ha=4(prupra— PooDrz2+ Pasbss— DaaPss+ Prapaa
— papr— Prapuat paspes) 02+ 4(— pupr
+ paaprz ™ Puapaat DaaPaat Prapra— DaDaz
— Praprat peapes) 0%+ 4 fa praa+ pasPrz
— Dasprz— Przhsat Praprat Puipm— Pradas
— pospas) 022 (— phi—~ Phat pha+ p30)
+4 (prupea— psadas) +8 (plz— 134 } 0204

+{4 (pruprat pasfra— Poapas— Daapes+ Pr1pea

— poafra— Pasprat Paapea) +8 (Przpia

— Porpos— pupaat puaps) } 0202+ {4(— pupis

— Pasris— Paapza— Prafraat Druipoa+ Pzbia

+ paaprat paapea) +8 (Praprat Prape+ pabas
+ Paapsa) } 0y 2 (8¢)

ha=4(pupis— Psapra— Peaboa~ Daapoa— Parbos

+ parpaat Prpnz— Pazpas) P2+ (Doapra— Pripa

+ pazpas— pasprat P fazs— Praprat Papdss
— paspar) 05+ 4(— pupra+ praprs+ puba

— Puspra— Prpoa+ Prabsst Prapra— Paapa) 05

+{4 (= pozproa— PasPra— prubra— Puprat bupe

+ paspeat posprat paspre) +8 (praprst pazpas

+ papest papas) Yooy H{2(— P+ pha— P

+ $4) +A4(Pripes— Daadus) +8 (D — pa) Yoz02

+{4(— pupre— prprz+ baspsa+ pupst pusbrz

+ Daafra— Dripss— Paopaa) + 8 (Ds1paat Pupe

— pupaz— Daspes) } oy 0z (8d)
=1l (8e)

lez= {4 (pr1poat Pt plo+ pha) +8(— prapos

— prapes) }AE T2 (Ph + D+ P+ phe) +4(—pha

+ pha— plat pha— bha— 13e) } 05 {4 (prupas
+ poopas) +4 (Pl + pia) + 8 (Prapas+ Prapzs)
+ 8 (pazpr2 — iz + Duapas— DuaPas— Parpaz
+ parpazt Prapra— pasdaa) P20y 8 (D114
+ pozia— Paars = PasPeat Draprat Paipea
— purpaa— Paapse) Oz +8(— pruprat paapra
+ Dr2froa— Psspeat pubas— Papas— Praprs
+ pazbus) Oupz

bra=4 (P11 Doy + Prapra— PasDra— Paapas+ Preprs
+ po1pra— Psipasu— Pazbas) 02+ 4(— pusp

103

(8f)

+ pudiat paapaz— PuaPrat parPan— Db

— prabrzt baspas) 05+ 4(— puprat pubdus

— paapeat Paapae— Prrpaat Darpsa— Prapns

+ puzpaz) O34 (— Pupis— pasbist Dezp

+ Daapas T Peers— Prifres— Dsapaat pasprs)

+8 (prapes— Prapra— paapaat parbas) } 0z0y
+{4(— pupiz— prabro— Psspaa— Pasbss)

+6 (pasprz+ puapiz+ pupsat pradas) +8 (Praps
+ parpaz+ Prapra+ Pasped) ) pzpz+{2 (01— e
— pha+ Phe) +4(Paapss— pripas) +8 (03

— i) }puoz (8g)
1=l (8h)
132: s (Si)

s ={4 (pr1pas+ pazpas+ phs+ p2s) +8(przpa
+ prups) 05+ {4 (pazdss+ pripast paa+ pla)
+8(— prapaa— prsped) }of +{2 (Pl + v+ ha
+ pha) +4(pha— pls— pha— pas— phat 134) } 03
+8 (paspra— pripaat pospas— Pasbra -+ PPz
— p1aprat Peapes— Pradas) Pzey + 8 (Priprs
+ Psspis— PazDaat Paafra— Daiprat pudus
— Praprat Pazpss) 0202+ 8 (— Pozpaa+ paspse
+ pubis— prupra— Pr2Prat Pazpast ooy
— Pa1pad) Py0s (8)

Note only that the derived measurement equa-
tion (Eg. (2)) subject to Eg. (3) and Eg. (6)
can be very easily determined from the star posi-
tion vector, and recursive formulas are then read-
ily applicable because of a unique feature quater-
nion expression of a measurement equation. By
observing the measurement equation in Eg. (2),
one can see that we intend to correct the model
error due to the nonlinear terms of the measure-
ment,

3. Propagation of the Filter for
Attitude Estimation

The gyro errors are caused by misalignment
and uncertainty, which contains bias, mass-un-
balance, anisoelasticity and scale factor (Heller,
1975). We assume that gyro errors are compensat-
ed by the gyro calibration, then gyro remaining
errors are only bias and white noise. Therefore,
the gyro measurement equation is modeled as
follows:

wu(B)=w(t)+b()+m(s) 9
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where, the vector g is the true angular velocity, b
is the drift rate bias and 7, is the drift rate noise.
The z is assumed to be a Gaussian white noise
process.

E[m(t)]1=0 (10a)

Elp®) ) ]=Qu(t)6(t—1") (10b)
The drift rate bias is itself not a static quantity but
is driven by a second-Gaussian white noise proc-
ess, and the two noise processes are assumed to be
uncorrelated as follows:

b () =m(t) (lia)
E[n()]=0 (11b)
Elp®)n(t) =W e(—¢) (1)
Elmp(t) 5(t)7]=0 (11d)
Attitude determination of the spacecraft

involves the estimation of the orientation of the
spacecraft axes in space (Britting, 1971). This is
achieved by processing data from on-board or
ground station sensors. Commonly used attitude
estimation methods for a spacecraft are the Euler
method, the direction cosine method, and the
quaternion method (Miller, 1978 ; Nurse, 1978 ;
Bar-Itzhack and Oshman, 1985 ; Bar-lItzhack and
Iden, 1987). Among them, the quaternion method
is the most popular because of its advantages in
nonsingularity, simplicity, and computation time
(Miller, 1978 ; Nurse, 1978). In the system inves-
tigated, the attitude is represented by the quater-
nion defined as:

qQ D2/ posin (¢do/2)
_le|_ G/ Posin (do/2)

T 4s| ™| 84/ dosin(o/2)

qs cos (¢o/2)

where, the vector ¢ is the rotational unit vector
related to the rotation axes and the angle ¢, is the
magnitude of the rotational vector. The quater-
nion possesses three degrees of freedom and sat-
isfies the constraint (Miller, 1978).

g7q=1 (13)

The differential equation for the quaternion is
given by (Miller, 1978 ; Nurse, 1978)

§=1/22(w)q

where, () is the skew symmetric matrix given
by

=

(12)

(14a)

0 Wz — w2 an
- 0
0 (Q) _ s w2 (14b)
W2 —wn 0 w3

—~w —w: —w: 0
We assume that the system states for the space-
craft attitude are given by the attitude quaternion
and the gyro drift rate bias vector, then the atti-
tude system is of dimension seven.

L o O

The quaternion and the bias vector have been
shown to satisfy the coupled differential equa-
tions (Miller, 1978 ; Lefferts, 1982).

d () =1/22(u () =5 (1) —m () ¢ ()
(16a)

5D =) (16b)

Let us express the errors of the state x as
follows:

[fé:tg]z[gm —g"(t)]

which is an implied definition of Jx. Substitution
of Eg. (17) into Eg. (16) yields:

[_@_1(1,‘)]“[1/29(@_“@2(2‘)) 0][@0)]

g(B) -G (17)

£2(8) 0 0JLz:(t)
+|:1/2Q(£(;‘§2(t)) —1/2F0(_:f_1(t))][ji§g]
e o)
+[—1/2FE)A_JQ1(L‘)) 8][;;23]
+[—1/2.Q(A§6(t))d@(t)] (18)

When we apply Eg. (18) into the propagation
equation derived from the Fokker-Planck equa-
tion, the state propagation equation is exactly
obtained as follows (Sage and Melsa, 1971):

Z=E[f(2)]
I[l/mm—@(t)) 0][;;10)]
0 01l 2.(2)
—1/2Q(dx:(£)) 42, (¢) ©

B ;

] (192)

where, f(x) is the right-half term of Eg. (18),
and
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E[=1/2Q(dx:(t)) dx: (1) ]
— Do+ Pse— Dus
_L = Dpas— Pas
21— et b= par
Dis T pas+ par
The prediction values of the state vector are
obtained from Eg. (19) with the special propaga-
tion structure having properties that do not con-

(19b)

tain truncation errors due to the nonlinearity of
the system for attitude dynamics.

Also, the differential equation of seven dimen-
sional error covariance matrix P is exactly der-
ived from the Fokker-Planck equation as follows:

P=E[f4x"]+E[4zf"]+E[GQGT]  (20)
The solution of Fg. (20) is employed by expand-
ing the function £(x, ¢) by the Taylor series, but
the Taylor series method used to solve Eq. (20)
(Jazwinski, 1970 ; Sage and Melsa, 1971) is
difficult and complex. If we let the state errors be
Gaussian, then the continuous propagation equa-
tion of covariance P is obtained by the substitu-
tion of Eg. (18) into Eg. (20).

P()=P)FT+FP(H+GRG™+M (2la)

where,

P[220 =20 1T @O
(21b)
T4 Xz X2
—I — X2 — X3
G(t):[—l/zpo@(t)) ?} 21d)
(o= V4T 40 0Lt O
(Qle)

When we derive Eg. (21), we neglect the third
order moment of state errors since they are
assumed to be a Gaussian process. Although the
state errors are not Gaussian, a third order
moment generally is nearly zero because the
probability density function has symmetric prop-
erties in spite of being non-Gaussian. Therefore,
the filter gain obtained from the solution of Ey.
(21) will be a suboptimal gain regardless of being

non-Gaussian.

Since the system matrix F in Eg. (21) is a
singular matrix, it is difficult to propagate the
error in the seven dimensional covariance matrix
P. A transformation matrix shown in Lefferts,
Markley and Shuster (1982) propagates the error
covariance matrix in six dimensional state space.
The transformation matrix S is given by

T 0 @)

S@‘):[ 0 7

The six dimensional error covariance matrix,

denoted as P, is given by

P($)=S'P(t)S
P(t)=SP(t)ST

(232)
(23b)

The covariance differential equation of six
dimensions is derived from differentiating Eq.
(23) and using the properties of the S matrix into
Eg. (21). This result, the covariance differential
equation of six dimensions, is given by Eg. (24).

P=FP+P((F) +GQGC)+M

(24a)
where,
F’(z)=[[@(é)x] _]0/21] (24b)
—1/2
w0
0 ws W2
[:Q(t)-l']: —ws O W (24d)
W —@ 0
. 1/4E[PT(._I":1)F(A_@) QJ“T(A@)F(@)] 0
M { 0 o]

(24e)

where, [@(¢)x] (Britting, 1971) is the skew sym-
metric matrix.

To compute M’ in Eg. (24), we must first
compute M. If matrix @, is assumed to be a
diagonal matrix, then it can be shown that

Bll /312 /313 314

n T — ,821 522 323 ﬂ24
B Am) Iz =1 o o, g

841 642 343 BAN
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raputabs (—@ps (B—a)pu (B—) pu
+ e — e —p —@pu
(—mpu apstapn (m—wpe (B—a)ds
|~ (Tt +ampu ~thpn —&hu
(—a)pu (B—a)pu apetapn (G-
= a3 — & pzs + P — &P
(e—a)pn (m—w)ps (@—@pe aputaps
L—mpu —f =P +apa
(25)

where, @, @, and @ are the elements of the
covariance matrix ¢, for the gyro measurement
noise on three axes. The six dimensional matrix
M’ can be obtained by substitution of Eg. (25)
into the first block matrix of Eg. (24¢).

ﬂll ﬂlz Blﬁ 514
B Be2 Bz B
,BE] 532 ﬁﬁs 634
B4l 542 B43 BIIA

1AM’ (t) =1/4"" (%) 'z

(26)

But E4. (26) is not in recursive form because
the derived g contains the covariance elements of
the seven dimensional /2. To obtain the recursive
form, we apply the Eg. (23) into Eq. (26), the
first block matrix 3/’ of Eg. (24) can be obtained
as follows:

Wit Gapre — s — &
M) = —api. apsstaspu — 1P
—Pls —mpPn Pt aipe
27

Substituting Eg. (27) into Eg. (24¢). we can
obtain the recursive form of the six dimensional
covariance differential equation. Comparing it
with the derived six dimensional covariance equa-
tion by Vathsal (1986, 1987), we can find that the
derived six dimensional covariance equation is in
recursive form for the general gyro model.

4. Discrete Update Equation
The discrete state update equation can be
defined as Eg. (28).

zk('+'):§k(_)+Kk[§k"“§k] (28)

Substituting Eg. (2) into Eg. (28), the update
equation is rewritten as follows:

ik(‘H =Z«(—) +Kk{§k_ TAgs(qe) Ast
(1) pi—E[v:]}= e (=) + Kilzx
~he (_le) —71'1\:} (29)

where, (%) = TAss(qc) Ast (Z1) .0: and 7z is
the mean of measurement noise that includes the
nonlinear terms. We already know it from Eg.
(19) and Eg. (2), that x.(—) in Eg. (29) does
not have truncation error and the residual of
measurement also does not have truncation error.
Therefore, the derived update equation (FEg.
(29)) does not have truncation error due to
nonlinear terms in the system and in the measure-
ment. Let us define the update covariance P as
Eq. (30).

Pe(+) =E[dx:(+) Az (+) ] (30)

where, Az, (4) is the state error vector. Follow-
ing Eq. (2) and Eq. (19), the state error equation
can be written as:

A_.’{'k(‘f‘) :gk_ik(“*)
Zdy(-—) — Kl TAgs(qc) Hk(ik:
1) dxie+ Vi — 7} (31

Substituting Eg. (31) into Egy. (30), we can
obtain the update covariance equation as follows:

Pu(+) =E[dzi(—) dzi(—) — dai (=) dzk(—)
(K — Ay (=) vEK ek (—)
ﬁ;?KkT— Kkako (—) AEIZ( -)
- Kk_yké@/{( —)+ Kkﬂkd£1{( =)
+ K Hedai (=) dxi(—) Hiet Hedze (=)
v — Hidxe (=) 2d + vedzi(—) Hi
+ vivkt — vt — vtk — mdxi (—) Hi
— ek + memi | Ki ) (32)

where, H, denotes TAzs(g.) Hx(£r 0)» m and
H,. is a deterministic function, and if we neglect
the third moment of Az, under the Gaussian
assumption. Then Eq. (32) can be rewritten as
follows:

Plc(+) :PI\".(_) — P (=) [{kKkT_—KkHIcPk(_)
+ Kl HiPo (=) Hi+ R KL (33)

where, R, is the covariance matrix with colored
noise due to nonlinearity of measurement.

Let us define the cost function as in Eg. (34) in
order to obtain the filter gain to minimize the
update covariance of Fg. (33) (Bar-Itzhack and
Oshman, 1985 ; Lewis, 1986).
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Je=E[dx.(+) dzi(+)] (34)

After substitution of Eg. (31) into Eg. (34) and
differentiating Egy. (34) with respect to K, and
putting it to zero, we can obtain the optimal gain
under the Gaussian assumption. That is,

Substituting Fg. (35) into Eg. (33), we can
obtain the update covariance equation as follows:

Po(+) =[] - K.H P (—) (36)

We can find that £g. (36) has the same form as
the update covariance equation of the linear
Kalman filter, and there is no error due to trunca-
tion errors because it is compensated by non-
linearity of the system and the measurement.
However, because the derived update covariance
equation neglects the third moment, the proposed
nonlinear filter becomes a suboptimal filter that
does not contain truncation errors due to non-
linearity.

5. Attitude Algorithm
for Nonlinear Filter

The proposed nonlinear filter in section 4
requires a lot of computation because of an inher-
ent nonlinearity and complexity of attitude
dynamics with coupled terms. We introduce here
a computation reduction technique using the
method of state division for a real time implemen-
tation. We assume that the solution of the covar-
iance Fg. (21) for propagation can be divided,
according to the state r, and state x,, by

P.Il(_) P.l').tz(_)]

Substituting Fg. (37) into Eg. (21), we can
obtain the individual form of the covariance
differential equation. That is,

Pe (=) =1/2Q(u— Z2) Pe: (—) +1/2P2 ()
QT(u— ) —1/2I" (&) Phaa(—)
—1/2P:2, (=) T7(Z) + /4T (X))
Qll.vT(il) +M {38a)

Py () =1/22(u— o) Pryzr (—) — 1/21—'(21)
Pr,(—) (38b)

Po(=)=Q, (38¢c)

()= (37)

Inspecting the three equations in Ey. (38), we
can find that the solution of P, can be obtained
independently by Egy. (38¢c). Therefore, we can
reduce compulation time since the differential
equations in Fg. (38) are solved using a sequen-
tial method as follows;

1) The solution of P,, can be obtained in-
dependently by Fg. (38c).

2) Substituting the solution of Eg. (38c) into
Eyg. (38b), the solution of P, ., can be obtained
independently by Eg. (38b).

3) Substituting the solution of Eyg. (38b) into
Eq. (38a), the solution of 2, ¢an be obtained
independently by Eg. (38a).

Also, we assume that K, the filter gain in Eg.
(35) is divided as in FEg. (38), and we subsititute
Eg. (37) and Eg. (38) into Eg. (35). The
divided filter gain equation is given by Eg. (39).

. KII
K"_[KIJ )
_ .Pz“(—) lexz(_) T _ T -1
Kk“[p;n(—) o |HatELP-) HER)

40)

Inspecting Eg. (40), we can define H, as in Eg.

(41) since the measurement matrix H, in Eyg.
(40) consists of only state a1

Hy=Hz, | 0] (41)

Substituting Fq. (41) into Eg. (36) and FEgq.
(40), the divided filter gain and update covarian-
ce are derived as follows:

Key=Po, (=) HL[He Lo (=) HE+R] - (423)
Klfz:Pg;l‘z(—)H_g; [I];“Px, (’— ) I{;l '{-‘RJ_I (42b)

PII(+):PIA(_)_KIAHIIPIJ(H_) (420)
P.r1x‘z(+) :‘pxx.l’z( “_) _KmHmPrlrz(_) (42d)
sz(+):sz(_)_KMHJ::PIMZ(‘) (426)

Inspecting the individual state update £y. (42),
we can independently solve them because they
represent each of the elements of the divided state.
Generally, computation of the matrix is propor-
tional to its dimension cubed (Bar-Itzhack and
Medan, 1983). The proposed attitude estimation
algorithm is divided into two groups as in Fyg.
(38) and Eg4. (42). If the dimension, 3, of the
system can be devided into two groups of dimen-
sion » and s which satisfy Eg. (38) and Eg.



138 Yong Joong Yoon, Jae Weon Choi, Jang Gyu Lee and Tae Hyun Fang

(42), then the number of the reduced operator is
3(»®m+ »m®). Since =6, =13, and m=13 in
this paper for determining the attitude of the
satellite, the proposed algorithm reduces the com-
putation time approximate by 1/4 times. The
proposed algorithm will be useful for a real time
attitude estimation of a spacecraft since it requires
less computing time compared with any existing
nonlinear algorithms,

6. Simulation Results

Performance of the proposed attitude algorithm
in section 5 is verified through a flow diagram as
shown in Fig. 2. We assume that the orbital
period of the spacecraft is 120 ., the spacecraft
has two star trackers, and the angular velocity of
spacecraft sensed by the gyros is 0.05deq/sec.
Hence, ¢,=0, 0,=0.005deg/sec, and w;=0deg/
sec are used for the simulation. Recently the
attitude sensors, when operating under high and
continuous slew rates, acceleration, and jerk

K(1,7)

l

motions, may introduce significant errors because
of coupled terms in the three axes of the space-
craft. Therefore, to verify the performance of the
proposed algorithm and the standard EKF, simu-
lations are performed by varying the initial state
values of the filters as in Table 1. Also, the initial
covariance values corresponding to the initial
state values are given as follows:

6.4% 107444 0 ]
0 53% 1071,
(432)

Spo=>5"; Poz'[

Table 1 Initial values of the filters.

Rotation .
Quaternion error (8g)
angle error =

Sdeg dg= (0.025, 0.025, 0.025)7
10deg dg=(0.05, 0.05, 0.05)7
15deg 8g=(0.075, 0.075, 0.075) 7

I

| B'=S'ES Quaternion and Gyro [+ 9(k)
P'=S"PS Drift Propagation le— b(t,)
Data | Propagation 6 Dimensional
*  Error Covariance Matrix X
4=
P=SPS" B
) Star
K, £(+) Quaternion and G Tracker
. N yTO
Covariance Update Drift Rate Update Data
Trace B,(+) g
True Quaternion| ¢ .| Square Mean
Generation of Error

Fig. 2 Simulation flow diagram for the attitude estimation.
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0.002
D.0019 ~
0.0018 ~
0.0017 ~
0.0018
0.0018 ~
0.0014 ,"T
0,0013 =
0.0012 ~
0.0011 +

0.001 +
0,000
0.0008 -
0.0007 ~
0.0008 ~
0.0008 - a
0.0004 =
0.0003 ~ b
0.0002 — i
0.0001

° Ll L | L L] L] 1 4 L) L L] L] L) T L§ L] L3 1 ¥ 1 |
0 2 4 ] a 10 12 14 18 1 20
NUWBER OF UPDATE
a  ExF +  HONUNEAR
Fig. 3 The errors of the quaternion for the EKF and the nonlinear filter (8¢, ; 5°, £ ; 100).

ROOT MEAN SQUARE ERROR

0.002
0.0019 ~
0.0018
0.0017
0.0018 ~
0.0018 ~
0.0014 ~
0.0013
2.0012
00019 ~

0.001 ~
0.0009 =
08,0008 ~

0.0008
0.0003

ROOT MEAN SQUARE ERROR

0.0003

0.0007

e L L] L§ L] 1 ] L] L L] L B | L) L] L] R L) L] L] T
0 2 4 ] ) 10 12 14 18 18 0
NUMBER OF UPDATE
D xr + NOMUNEAR
Fig, 4 The errors of the quaternion for the EKF and the nonlinear filter (§¢, ; 5°, £’ ; 400).

2.6 xX1073],,, 0 The gyro noise and the measurement noise have
0 5.3><10‘“13x3] been simulated using RAND and GAUSS sub-
(43b) routings that generate uniformly distributed ran-

57X 1073, 0 dom numbers and Gaussian-distributed random
0 53x 10‘“[3”] numbers, respectively. The gyro data was simulat-

(43c) ed for a sampling time of 500m sec and star

Oepo=10° ; P():[

Spo=15°; Poz[
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0.002
0.0019 -
0.0018 -
0.0017 -
0.0018 ~
0.0015 =
0.0014 ~
0.0013
0.0012
0.0011 -

0.001 =~
0.0008 =
0.0008 ~
0.0007 -
0.0008 -~
0.0005
0.0004
0.0003 -
0.0002 —~
0.0001 —~

¢t

ROOT MEAN SQUARE ERROR

4] 2

NUMBER Of UPDATE
+  NONLINEAR

o EXF
Fig. 5

0.002

The errors of the quaternion for the EKF and the nonlinear filter (8¢, ; 10°, R’ ; 100).

0.0018
0.0018 -
0.0017
0.0015 ~
0.0015 ~
0.0014
0.0013 -
0.0012 ~
0.0011 ~
0.001 ~
0.000¢ -
0.0008 =
0.0007
0.0008
0.%005
0.0004
0.0003
0.0002
€.0001

L

ROOT MEAN SQUARE ERROR

11 1 1 _k

I

i

0 1 Ll I ¥ i 1 L LI

0 2 4 6 8

L LI T 1 L L L ] T

10 12 14 18 L] 20

NUMBER OF UPDATE
F -

NONLINEAR

Fig. 6 The errors of the quaternion for the EKF and the nonlinear filter (8¢, ; 10°, R’ ; 400).

tracker outputs were simulated at an interval of
120 sec. The covariance propagation equations
have been simulated with a step size of 500m gec
using a fourth-order Runge-Kutta scheme of
numerical integration on the digital computer.
The standard deviation of the process noise

was simulated for 1 grc second/sec. The stan-
dard deviation of measurement noise R’ was
assumed to lie between 10 and 200 gyc seconds.
The standard deviation of the drift rate noise p,
was assumed to be 4.7 X 10™°gyre seconds/ sec-
Both the EKF and the proposed algorithm
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ROOT MEAN SQUARE ERROR
o
g
1

O EXF
Fig. 7

0.002

NUMBER OF UPDATE
+ N

The errors of the quaternion for the EKF and the nonlinear filter (8¢, ; 15°, B’ ; 100).

0.0019 -
0.0010 -
0.0017
0.0018 =~
0.0013 ~
0.0014 —
0.0013 -
0.0012 -
0.0011

0.001 =
0.0009 -

0.0007 —
0.0000
0.0005 -
0.0004 -~
0.0003 b
0.0002 —

ROOT MEAN SQUARE ERROR

0.0001 MWM

oo

10 12 14 18 18 20

NUMBER OF UPDATE
+*

Fig. 8 The errors of the quaternion for the EKF and the nonlinear filter (8¢, ; 15°, B’ 400).

were simulated under the given conditions. Since
the quaternion estimations are random processes,
100 Monte Carlo simulation runs were carried
out for the estimation algorithms. Many simula-
tion runs have been made and the results are
summarized in Fig. 3 to Fig. 8. The root-mean-

square estimation errors of the quaternion against
the star update are plotted in the figures. It can be
seen from the figures that the proposed algorithm
shows consistently better performance than that of
the EKF in all the ranges of the initial state
values and the covariance values of measurement.
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From Fig. 3 and Fig. 4, it is apparent that the
root-mean-square estimation errors of the quater-
nion are bounded by the measurement update,
however, the root-mean-square estimation errors
of the proposed algorithm are much lower than
that of the EKF, and the convergence speed of the
proposed algorithm is faster than the EKF. The
initial value of the rotation vector error in Fig. 5
and Fig. 6 is 10 deg, and the initial value of the
rotation vector error in Fig. 7 and Fig. 8 is 15
deg. 1t can be seen from Fig 5 to Fig. 8 that the
performance of the EKF is not improved by the
measurement update because of the model errors
in the EKF. But the proposed algorithm exhibits
an improved performance since the covariance of
the filter is compensated by nonlinearities in the
system.

7. Conclusions

The attitude algorithm presented in this paper
deals with the problem of high and continuous
maneuver base motion in applications where an
accurate attitude estimation is required. The non-
linear filter for attitude estimation derived in this
paper is accomplished by implicating the mean
and covariance of nonlinearities in system and
measurement, The derived nonlinear filter is a
suboptimal estimator. However, the proposed
estimator requires a lot of computation because of
an inherent nonlinearity and complexity of the
system model for attitude. For more efficient
computation, this paper introduces a new attitude
estimation algorithm using the state divided tech-
nique for a real time processing which is devel-
oped to provide accurate attitude determination
capability under the highly maneuvering dynamic
environment. The proposed estimation algorithm
for spacecraft attitude does not produce any trun-
cation bias errors, and it does not diverge because
the covariance of the estimator is compensated by
the nonlinear terms of the system. Therefore the
proposed estimator exhibits an improved perfor-
mance compared with the EKF.

To verify the performance of the proposed
algorithm with reference to the EKF, simulations
were carried out for several initial values of the

state al’ld covariance and several measurement
covariance. Simulation results show that the
proposed algorithm had consistently better perfor-
mance than that of the EKF for all of the cases.
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