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An Attitude Determination Algorithm for a Spacecraft 
Using Nonlinear Filter 

Yong Joong Yoon*, Jae Weon Choi**, Jang Gyu Lee*** and Tae Hyun Fang**** 
(Received April 22, 1998) 

In this paper,, the algorithm for a real time attitude estimation of a spacecraft motion is 

investigated. The proposed algorithm for attitude estimation is the second order nonlinear filter 
form not containing truncation error in estimation values. The proposed second order nonlinear 
filter has improved performance compared with the EKF (extended Kalman filter), because the 

algorithm does not contain any truncation bias and covariance of the estimator is compensated 
by the nonlinear terms of  the system. Therefore, the proposed second order nonlinear filter is a 

suboptimal estimator. However, the proposed estimator requires a lot of  computation because 

of an inherent nonlinearity and complexity of the system model. For more efficient computation, 
this paper introduces a new attitude estimation algorithm using the state divided technique for 
a real time processing which is developed to provide an accurate attitude determination 
capability under a highly maneuverable dynamic environment. 

To compare the performance of the proposed algorithm with the EKF, simulations have been 

performed with various initial values and measurement covariances. Simulation results show 
that the proposed second order nonlinear algorithm outperforms the EKF. The proposed 

algorithm is useful for a real time attitude estimation since it has better accuracy compared with 

the EKF and requires less computing time compared with any existing nonlinear filters. 
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I. Introduction 

The high maneuverability requirements of  a 
number of  future three-axis slewing spacecraft, 
when coupled with stringent attitude and pointing 

accuracy requirements, demand new nonlinear 
filters for determining spacecraft attitude func- 
tion. Moreover, the attitude determination sen- 
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sors, when operating under high and continuous 
slew rates, acceleration, and jerk motions among 
possibly all three axes of  the spacecraft, may 
introduce significant cross axis errors not other- 

wise encountered (Yong and Headly, 1978 ; Zwar- 
tbol, Van Den Dam, Terpstra, and Van Woerk- 
kom, 1985; Vathsal, 1986, 1987). Another aspect 
of consideration is that it should operate in a real 
time on-board environment with only minimum 
ground interface in the nominal operation mode 
(Yong and Headly, 1978 ; Bar-ltzhack and 

Medan, 1983 ; Medan and Bar-Itzhack, 1985). 
This requirement imposes restrictions on the 

computational procedure of real time data reduc- 

tion and processing. Based upon the above 
requirements, we will introduce a real time on-  

board precision attitude estimation to provide 
accurate attitude determination capability under 
the highly maneuverable dynamic environment. 

The problem of the minimum variance estima- 
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tion of the nonlinear system subjected to the 
stochastic noise has been applied in a wide vari- 
ety of engineering problems including spacecraft 
attitude determination, orbit determination, space 
vehicle navigation, and state estimation for state 
vector control (Kau, Kumar and Granley, 1969 ; 
Jazwinski, 1970 ; Sage and Melsa, 1971), The 
estimation of a nonlinear system is governed by 
the Fokker-Planck partial differential equation, 
which can be derived either from the Chapman-  
Kolmogorov equation or the lt6 differential rule 
(Jazwinski, 1970 ; Sage and Melsa, 1971). But, 
because of the infinite dimensional nature of the 
partial differential equation, the Fokker-Planck 
equation is not directly solved in any practical 
application. The solution of this problem necessi- 
tates seeking a finite dimensional approximation 
using Taylor series and Gaussian etc. (Jazwinski, 
1970 ; Sage and Melsa, 1971). 

Attitude information may use any sensor for 
which the measured quantity depends solely on 
the direction of some object in the sensor coordi- 
nate system (Britting, 1971 ; Lefferts, Markley and 
Shuster, 1982 ; LO, 1986). However, we assume 
that two precision star trackers exist on the space- 
craft in inertial space since it is commonly used in 
most practical applications in attitude estimation 
of a spacecraft. The system concept for attitude 
estimation is illustrated in the block diagram 
shown in Fig. 1. 

The spacecraft attitude model is represented by 
a quaternion which is a second order nonlinear 
system (Vathsal, 1986, 1987 ; LO, 1986). The 

Fokker-Planck equation corresponding to its 
model can be represented exactly. This paper 
derives the attitude estimator from the Fokker-  
Planck equation and the measurement model 
where the nonlinear terms of measurement repre- 
sent the measurement noise. We will show that 
the proposed estimator for the spacecraft attitude 
does not produce any truncation bias errors, and 
the covariance of the estimator is compensated by 
the nonlinear terms of the system. The proposed 
estimator however requires a lot of computation 
because of the inherent nonlinearity and complex- 
ity of the system model for attitude. To reduce 
computation, this paper introduces a new attitude 
estimation algorithm using the state divided tech- 
nique. 

In the next section, a nonlinear measurement 
model for a star sensor will be derived, in section 
3, we will discuss the special features of  the 
propagation equation for a nonlinear attitude 
filter. The measurement update equation will be 
derived in section 4. In section 5, a new algorithm 
for the spacecraft attitude estimation will be 
developed. In section 6, we will discuss the simu- 
lation results for the proposed algorithm. Finally, 
in section 7, the main topics of  the work will be 
summarized. 

2. Model of  Measurement  Sensors 

The attitude sensors considered here are star 
trackers, which are the most accurate in the 
practical applications of filters for attitude estima- 
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Fig. 1 Block diagram of the attitude estimation using the quaternion. 
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tion (Heller, 1975). Therefore, it is assumed that 

two precise star trackers exist on the spacecraft to 

obtain accurate attitude measurements of the 

spacecraft with respect to inertial space. The star 

trackers provide att i tude information,  and 

uniquely determine the sensed star unit vector in 

the star local frame with respect to inertial space, 

Between star sensor update intervals, an estima- 

tion of the spacecraft attitude is maintained by use 

of three rate integrating gyros. The errors in gyro 

output are bounded when the filter for attitude 

estimation is innovated by the star sensor. The 

measured value of a star sensor in body frame can 

be written as Eq. (1) (Heller, 1975 ; Yong and 

Headly, 1978). 

z_ = T A ~ s ( q ~ ) A s i ( q ) p + v '  (1) 

where, As~(q) is the spacecraft attitude matrix, 

A,s(qc) is the alignment matrix of the star 

tracker, and _p is star position vector in the refer- 

ence coord ina t e  system, and v ' is a r andom 

noise vector due to the star catalog position errors 

and star tracker output noise. The attitude matrix 

with quaternion in Eq. (1) is a second order 

nonlinear function. We will attempt measurement 

reformulation which measurement noise impli- 

cates nonlinearity of measurement. Thus, if we 

replace the states x in the Eq. (1) with s  z/x, 

then the measurement equation is rewritten as 

tbllows: 

z_~ = TA~s (q~) {As, ( 2 0  ~p~ + H~ ( 21, p~) AN, 

+ Asi (AX,) ip~} + U S - -  TAos (qr {As, (21) ~p~ 
+ Hi (2~, 21) A x,} +_v, (2) 

where, 21 is the first term of the estimated value 

.for x~ by Taylor series expansion, and 

T=[10 0 1 00] (2a) 
H~(2~, p,.) -- OAsi (Xl)_P~ x,=~, (2b) 

- - 3 x ~  _ _ 

v = TA,~s (qc) As~ (zlxD m + v' (2c) 

The redefined measurement noise in Eq. (2c) is 

not white Gaussian noise, but colored noise, in 

Eq. (2c), we let the elements of the star position 

vector be px, pu, and p,, respectively, then we can 

obtain the stochastic mean value of the colored 

measurement. That is, 

E [s = TABs (qc) E [As~ (zJxl) p~] 

= TABs (qc) 

[(P,l-h2-P33 +P44) +2 (p,~ +p~,) +2 (p13-h3 Px p~ pz 

2 (p~.~ + p2,) p~ +2 (h~-P,,) p~ + ( - P ,  -P~ +P~ + P,) p~ 
(3) 

where, Po are the covariance elements correspond- 

ing to state i and j .  Also, the covariance R of  

colored measurement noise can be calculated 

from Eq. (2c) and Eq. (3). 

R = E Ev~ ~] - E E_v~ E I:v] ~ 
= TABs (q~) {E EAs~ (zlx~) ppTAsi (2,V,) T] 

- A ( P )  p p r A ( P ) ~ } A , s ( q ~ ) r T r  + R  ' (4) 

The first term in Eq. (4) has only fourth-order 

moment of state errors zlx. If we assume that state 

errors Zlx are Gaussian, then fourth order 

moment generally has the relation among state as 

Eq. (5)(Jazwinski, 1970). 

E [ZlX~2XjZJXkZJXl] = P~kP~ + P.~P~k + P,~P~ (5) 

Therefore, applying Eq. (3) and Eq. (5) into 

Eq. (4) brings Eq. (6) as follows: 

R = TABs(q~,) {L (P ,  ~_)}A,s(q~) r T r + R '  (6) 

where, 

L (P, _p) = E [As, (z/xD pprAs~ (zJx~) r] 
- A (P) p p T A  (P)  r (7a) 

As, (z/x0 = 

-~ 2 ~ 2 ~ 2+zlx 2 2(zJxlx2+Zlx~Ax,) AIX1 -- Z.IX2 - -  s "4 

2 (AxlZlx2-  Axszlx4) ~ "~ 2 2 - Ax~ + zJx2 -- zlx3 + Zlx4 
2 (zJxlZlx~ + Zlx2Ax,) 2 (2x2,3x3- zlx~Zlx,) 

2 (ZJx,zJx3-- ZlxzAx,) ] 

2(2Xlz~X4-[-Z~Z2z~X4) / ] (7b) 
2 7~ 2_[_ 2 - z/x, - Ax~ +,9x8 ~/x4 / 

A ( P )  = 

[ Pn-P22-P33+P44 2 (]h2+P34) 2(pl3-P24) 
2 (P~z--Pa,) -Pnq-Pe2-P'Jz+P, ,  2 (P14 q-Pza) 
2 (p13+P24) 2 (p2a'*" P14)  - -P l l - -P22~-p~ ,~3 f fp4  , 

(7c) 

Substituting Eq. (7b) and Eq. (7c) in Eq. (7a) 

gives 

[lz /'1.~ ] 

111={2(p~q_])2~q_p~3q_D,4)  2 2 
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2 2 g: 2 + l m -  P2,-  P~,) }p~+ 4 (p,,lm + 1)331),4 + P~.z 
4-1).~a + 2p13P24 q- 2p,4P.z3) p~-4- 4 (p~ lP3a 4-1)2zPa~ 

2 2 4- Pla -~- P24 -- 2preP3,-- 2p~p.z3) PZz + 8 (p, @r. 

- -  P22P~.Z - -  P33Ps4 4- P44P34 - -  p3,p:~2 -}- P4'P42 

4- PI3PI4 - -  ll)z3P24) PxPu 4- 8 ( P n P , 3 - -  P33PI3 

4- P22Ps~ - -  1)44P42 - -  P2,P~a 4- P~,P~a-- P121)14 

+ Pa.zP3,) P~Pz + 8 (p,,P23 -- Pz~P. 4- P3aPl4 

-- p4~P.za + 1),2P,3 -- P.Z~P2, + Pv~P34-- P42P43) PuPz 
(Sb) 

[1": = 4 ( pH p,.z - -  P22 Pt 2 + P33Pa, - P,,P3, 4-1)I,P2, 
2 

- -  P3,p32 - -  PaaPx , + P23P.Z4) Px %" 4 ( - -  Pl11)12 

4- P.Z.ZP,2 - "  joa3P3, 4- p4@:~ 4- P141)24 - -  P31~32 

- P~,#'~4 + 1)23p2,) p~, + 4 ( /~  1):~ + P3~p,2 
- -  P441)'2 - -  P2.ZPa4 ~- 1)13/*)14 4- 1)3,p32 - -  P14~24 

- p2:~2,) ,o~ + {2 ( - ~ , - -  p~ + ~a  + p~,) 

+ 4 (I),,1)22-Im1).) + 8 (p~2- N,) }p.w~ 

+ {4 (p, ,p , ,  + Pa,P14 -- P22P.za -- P33Pz~ + P, lP23 

- -  p22P14 - -  P33P~ 4- P44P23) 4- 8 (Pa21),3 

- -  P2~1)24 - -  P3aPa4 4- P~.ZP,3) } pxpz 4- {4 ( - -  p,~p~3 

- PaaP,3 - P2.zP~,-- p4,P'~, § Pnp~4 4- P.z.zP,3 

'{ P,4Pla 4- i033P.24) 4- 8 (P~2Pl, 4- P,2P23 + P~,P,3 

4- P32Pa,) } PuP, (8c) 

1,3 = 4 ( p,,p,3 - -  P33P~ - p2"zP.z, + 1)44P~ - -  jO~lP2S 

4' P~P,3 4-1),4Pve-- P32P2~) p~x + 4 (1)22P~a-- P~, P24 

+ P3aP2, -- P~,P,a 4-1)~.,P'z3-- P .p ,2  + P3~P34 

-- p~3P4~) P~ 4- 4 ( -- p,,p,3 + P3aP,3 + P'z"P~, 

- -  P44P24 - -  J021 1)2.q 4 -  PI4P34 4 -  PrzP,4 - -  p32P34) 1 0 2  

4- {4 ( -- 1)22p'z~ -- P33P23 -- P, ,P, ,  --1)~,P,, 4-1),,1)z~ 

+ P4,P23 + P321)~4 + P3aP,4) 4- 8 (P~zP,a + P4.ZP,3 

+ p.z~p2,-+Pa, pa,) } o~p,~ + {~ ( - pL + p~2 -.  p~3 
4- N,) + 4 (1). p.~a- 1)22p.) + 8 ( p~3 - p~,) } o~o~ 
4- {4 ( - -  1), ,P12 - -  P22P,.Z 4-1)33p34 4-/)441)34 4- Pa3Pl2 

-~ P~,P~2-- 1),~P34 --  1)22P3~) + 8 (1)3,P32 + P4~1),2 

-- P4,P,3-- P2,P23) } PuP~ (8d) 
/2, = 1,2 (8e) 
l= = {4 (p,,p= + P3aP. + ph + P~.) + 8 ( - ;0,31)2~ 

3 2 2 .z+ 2 .z 2 --P~4P23) }f x4-{ (Pn P22 + Paa4-P~) + 4 ( - - p ~  
+ 1 /  _ ..,2 + .~2 _ .z 2 2 

4- P22P33) 4- 4 ( P~a 4- N3) 4- 8 (l.h.zP3, 4- P,~P.Z4) } P~ 

+ 8 (P.z.zP,2 --P~P,2 4- P:,aP44 -- 1),4P:~, -- Pal1)32 

4-1)alP4z 4- Pl3iO,~ --/)23])24) PxPu 4- 8 (201 lP~, 

4- P.~ P441)13 --" P33P34 4- PI 2PI '  4-1)21p23 

- -  P41 1)43 - -  ])82])34) PxDz 4- 8 ( - -  Pl  lP14 4- p~4P14 

4- PZ2P2.~ - -  P33P23 4- P21P24 - -  P31P3, - -  1 ) , 2 P , 3  

4- P,zP4z) P u P z  (8t') 

[z~ = 4 (P,~1)za + P.Z2P,4 -- Pa3P~4 -- P~,P.Z~ + Px2P~a 

+ Pexp24 -- P3,P3,~ --  P, zP,3) p~ + 4 ( -- 1)32Pa3 

q- PllPI4 4- P~.ZP23 - -  P44PI4 4- P31P34 - -  1)21P24 

-- PlaPlz + P42P4~) p2u 4- 4 ( -- P,,P,4 + P44P14 

-- P22123 + 1)aa~2-- P21P24 + PalP34-- p12P,a 

4-./)4.zP43) Pzz 4- {4 ( -- PamPa3-- Pa3P~3 + P22P24 

-~ P44P'Z4 ~- P22P13 - -  pl  lP'Z4 - -  P33p24 ~- P44P13) 

+ 8 (/h2Pz~ - P,.ZP,4- P32P34 + P41P43) } p~p~ 
+ {4 ( - lO,,Pl~- ImPl.z-  P33P3,- i0.P34) 

+ 6 (P33P~z + P-P,2 +.OnP34 + P22P34) + 8 (P,3Pa.z 

+ P~P,.Z + P,3P,~ + ImP.z,) ) P~P. + {)- (b~, - P~.z 
- b~3 + p~,) + 4 (p2~p33- pn1).) + 8 (~a 
- -  1)24) } PuPz (8g) 

13, = l,..~ (8h) 

la.z = 123 (8i) 
/~3 = {4 (0..1)~3 + P.Z2P. + P'f3 + P~,) + 8 ( P,2P3, 

+ Px,Pa.z) } p~ 4- {4 (/~2P3a + P,,1,4, + P~3 + P~,) 
)2 2 .z + 8 ( -  p,21)a,-p,31)2,) } ~ . +  { (p .  + p=2 + 1)332 

+p~,) .z 2 ~ 2 2 2 + 4 ( p ~ -  1)~3- P , , -  P . -  P2, + N,) }0.  
+ 8 (P33P~2-- P,~Pa* + 1)2~p3~ -- P441),2 + P31P3~ 

- -  P~2P,~ + P.Z3P24 - - ] ) ' 4 P 2 4 )  PzPu + 8 (Pn1),3 

+ jOa31),3 - -  P'Z.ZP24 4- jO44P24 - -  P2,pz~ + P41P43 

-- P12JO14 + P:~'~P34) Pzpz 4- 8 ( -- 1)22p23 -If- Pa31)32 

4- P, 1.014 - -  P44P,4 - -  P121),3 4- P4.ZP43 4- ProP.Z4 

-- ])~tp3~) PuPz (S j)  

Note  only that  the derived measurement  equa- 

t ion (Eq .  (2)) subject to E q .  (3) and Eq ,  (6) 

can be very easily determined from the star posi- 

t ion vector, and recursive formulas  are then read- 

ily appl icab le  because of  a unique tbature quater-  

n ion expression of  a measurement  equation.  By 

observing the measurement  equat ion  in Eq .  (2), 

one can see that  we intend to correct the model  

error  due to the nonl inear  terms of  the measure-  

ment. 

3. P r o p a g a t i o n  o f  t h e  F i l t e r  for  

A t t i t u d e  E s t i m a t i o n  

The gyro errors are caused by misa l ignment  

and uncertainty,  which conta ins  bias, mass -un-  

balance,  anisoelast ici ty  and scale factor (Heller,  

1975). We assume that gyro errors are compensat-  

ed by the gyro cal ibra t ion,  then gyro remaining  

errors are only bias and white noise. Therefore,  

the gyro measurement  equa t ion  is modeled  as 

follows: 

u ( t )  =co ( t )  + b_ (~) + e, (t) (9) 
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where, the vector co is the true angular velocity, b 
is the drift rate bias and .~ is the drift rate noise. 
The r/x is assumed to be a Gaussian white noise 
process. 

E [V, (t) ] ----0 (10a) 
E[R~(t)~(t ' )r]=O~(t)a(t- t  ") (10b) 

The drift rate bias is itself not a static quantity but 
is driven by a second-Gaussian white noise proc- 
ess, and the two noise processes are assumed to be 
uncorrelated as follows: 

b_" ( t ) = _ ~ ( t )  ( l la)  
E [v2 ( t ) ]  = 0  ( ] lb)  
E[_~2(t) v_~(t')r]=Q2(t)8(t-t ') ( l lc)  
E[~,(t)~_2(t') r] ----0 (1 ld) 

Attitude determination of the spacecraft 
involves the estimation of the orientation of the 
spacecraft axes in space (Britting, 1971). This is 
achieved by processing data from on-board or 
ground station sensors. Commonly used attitude 
estimation methods for a spacecraft are the Euler 
method, the direction cosine method, and the 
quaternion method (Miller, 1978 ; Nurse, 1978 ; 
Bar-Itzhack and Oshman, 1985 ; Bar-ltzhack and 
lden 1987). Among them, the quaternion method 
is the most popular because of its advantages in 
nonsingularity, simplicity, and computation time 
(Miller, 1978 ; Nurse, 1978). In the system inves- 
tigated, the attitude is represented by the quater- 
nion defined as: 

[q~l [r162 
[q~[ [r162 (r (,2) 

Lq, J L cos(r 
where, the vector ~ is the rotational unit vector 
related to the rotation axes and the angle r is the 
magnitude of the rotational vector. The quater- 
nJon possesses three degrees of freedom and sat- 
isfies the constraint (Miller, 1978). 

qTq=l (13) 

The differential equation for the quaternion is 
given by (Miller, 1978 ; Nurse, 1978) 

0 = 1/2f2 (co) q (14a) 

where, ~ (co) is the skew symmetric matrix given 
by 

I 0 OAs -- (02 ~l 1 
~(co) = --co3 0 col (14b) 

--  ~ -- (Oa 0 COs 
0 - -  ( . 01  - -  ( . 02  - -  ( / ) 3  

We assume that the system states for the space- 
craft attitude are given by the attitude quaternion 
and the gyro drift rate bias vector, then the atti- 
tude system is of dimension seven. 

[xl ( t )]_[q( t )]  = l b ( / )  J (15) _x(t) - ~2(t) 

The quaternion and the bias vector have been 
shown to satisfy the coupled differential equa- 
tions (Miller, 1978 ; Lefferts, 1982). 

0 (t) = 1/2~'2 (_u (t) - b ( t )  -_~1 ( t))  q (t) 
(16a) 

b_" (t) = z/_2 (t) (16b) 

Let us express the errors of the state x as 
follows: 

[Axl(t)] [ q ( t ) - ~ ( t )  
A-_z,(t) ---- b ( t )  /~(t)]  (17) 

which is an implied definition of Ax. Substitution 
of Eq. (17) into Eq. (16) yields: 

+[1/2~(uff ~,2(t)) -1/2F(Y,(t))l[Ax,(t)]O_ JLAxz(t) J 

+r-1/2C(21(t)) o ] [ ~ ( t )  
L 0 -  IJL~2(t) ]  

+ F-1/2F(Ax~(t) ) o ] [ ~ ( t )  
[ 0 - 03L_~2(t) J 

+ [ -  1 /2~  (AX~o(t)) zJ~' (t) ] (18) 

When we apply Eq. (18) into the propagation 
equation derived from the Fokker-Planck equa- 
tion, the state propagation equation is exactly 
obtained as follows (Sage and Melsa, 1971): 

= E E/(x) ] 

= [1/2f2 (UO g ' z ( t ) ) "  0 J L ~ ( t )  J ~  

+ E [ - 1 / 2 ~ ( Z / ~ e 0 ( t ) ) A ~ l ( t )  ~] (19a) 

where, f ( x )  is the right-half term of Eq. (18), 
and 
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E [ - 112 _c2 (z/x~ ( t ) )  A_x~ (t) ] 
[ - P,~r + Pa6- P45- 
i 

1 | Plr--Pa.~--P4~ (19b) 
= 2 |  I __ Px+ + P2~ - P,r 

k Pie + P26 + Pa? 

The prediction values of  the state vector are 
obtained from Eq. (19) with the special propaga- 
tion structure having properties that do not con- 

tain truncation errors due to the nonlinearity of 

the system for attitude dynamics. 

Also the differential equation of  seven dimen- 
sional error covariance matrix p is exactly der- 

ived from the Fokker-Planck equation as follows: 

P = E [ S A x  '~'] +E[Axfr~ +E[GQG r] (20) 

The solution of Eq. (20) is employed by expand- 
ing the function f ( x ,  t) by the Taylor series, but 
the Taylor series method used to solve Eq. (20) 

(Jazwinski, 1970 ; Sage and Melsa, 1971) is 

difficult and complex. If  we let the state errors be 

Gaussian, then the continuous propagation equa- 
tion of covariance p is obtained by the substitu- 

tion of Ecl, (18) into Eq. (20). 

P ( t ) = P ( t ) F r  + F P ( t ) + G Q G r  + M  (21a) 

where, 

FCt)=[  1/2[2@A(t)O - 22(t) ) - l12_P(2,( t)  ) 

(21b) 

I ~ (x) = :z:4 - X1 (21c) 
- -  - -  2 X l  ,Z'~4 

L--3; ' l  - - 3 ? 2  - - X a  

G(t) = [-l/2F(&Ct))O_ IO] (21d) 

. =,+[l.,-.,+,x+,,,, o 3] 
(21e) 

When we derive Eq. (21), we neglect the third 
order moment of state errors since they are 

assumed to be a Gaussian process. Although the 
state errors are not Gaussian, a third order 

moment generally is nearly zero because the 
probability density function has symmetric prop- 

erties in spite of  being non-Gaussian. Therefore, 

the filter gain obtained from the solution of  Eq. 
(21) will be a suboptimal gain regardless of  being 

non-Gaussian. 
Since the system matrix F in Eq. (21) is a 

singular matrix, it is difficult to propagate the 
error in the seven dimensional covariance matrix 

_P. A transformation matrix shown in Lefferts, 
Markley and Shuster (1982) propagates the error 
covariance matrix in six dimensional state space. 
The transformation matrix S is given by 

S(2~)_ I F ( o  (t)) 0 ] = -- I J+'• (22) 

The six dimensional error covariance matrix, 

denoted as p ' ,  is given by 

P" (t) = SrP(t)  S (23a) 
P(t)  =SP' ( t )  S r (23b) 

The covariance differential equation of six 

dimensions is derived from differentiating Eq. 

(23) and using the properties of  the S matrix into 
Eq. (21). This result, the covariance differential 
equation of six dimensions, is given by Eq. (24). 

P ' = F ' P ' + P ' ( F ' )  r +  G'Q (G')r +Mr 
(24a) 

where, 

F'(t)~-[Ew(~ )x] -t/021 ] (24b) 

G'(t) = [ - 1 / 2 I  0 0i] (24c) 

- -  (02  

[ w ( t ) x ] = -  --(0s 0 j (24d) 

(0a  - -  (01 

r l/4E eFT(21) V (Axx) OiV r(Ax,) F (2,) ] 

(24e) 

where, [ (0( t )x]  (Britting, 1971) is the skew sym- 
metric matrix. 

To compute M '  in Eq. (24), we must first 

compute M. If matrix Qt is assumed to be a 
diagonal matrix, then it can be shown that 

E[ F (zlx, I Q, Fr  Cz]x,) ] =[ ~2, 13z., /3=a fl24] 
_ _ i,5,+, .e++ +e,, I 

ks ~,+ ,6'4:+ ~+,J 
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- -  ffl P14 - -  ~dp')4 - -  0~j0S4 ~- (/3 P33 

(25) 

where, a~, a~, and a~ are the elements of the 

covariance matrix Qa for the gyro measurement 

noise on three axes. The six dimensional matrix 

M '  can be obtained by substitution of  Eq, (25) 

into the first block matrix of  Eq. (24e).  

1/4M'(l)=l/4Fr(fi~O|,-. .  ~ fl~a -- 

L2,, ~,~ /3,~ /34,1 
(26) 

But Eq. (26) is not in recursive form because 

the derived/3 contains the covariance elements of 

the seven dimensional p .  To obtain the recursive 

form, we apply the Eq. (23) into Eq. (26), the 

first block matrix M" of Eq. (24) can be obtained 

as follows: 

M ' ( t ) ' - |  -a'd)i~ a~pi~+a~Ph - a ,  pi~ | 
! ! ~ _  t 

(27) 

Substituting Eq. (27) into Eq. (24e),  we can 

obtain the recursive form of the six dimensional 

covariance differential equation. Comparing it 

with the derived six dimensional covariance equa- 

tion by Vathsal (1986, 1987), we can find that the 

derived six dimensional covariance equation is in 

recursive form for the general gyro model. 

4. Discrete Update Equation 

The discrete state update equation can be 

defined as Eq. (28). 

2k(.+) - - -2k( - )  +Kk[zk-- 2kJ (28) 

Substituting Eq. (2) into Eq. (28), the update 

equation is rewritten as follows: 

~,, ( + ) = 2~ ( - )  + Kk{z_k -- TABs (q~) As, 

(2,) ~p~- E E_v~ } ~ 2k ( - )  + Kk{_Zk 
- hk (~,)  -- ark} (29) 

where, hk (21) = TAss(qc) Asl (21) ~pe and ark is 
the mean of  measurement noise that includes the 

nonlinear terms. We already know it from Eq. 
(19) and Eq. (2), that x k ( - )  in Eq. (29) does 

not have truncation error and the residual of 

measurement also does not have truncation error. 

Therefore, the derived update equation (Eq. 
(29)) does not have truncation error due to 

nonlinear terms in the system and in the measure- 

ment. Let us define the update covariance p as 

Eq. (30). 

Pk ( + ) ---- E [Ax~ ( + ) Ax[( + ) ] (30) 

where, z/x~ ( + )  is the state error vector. Follow- 

ing Eq, (2) and Eq. (19), the state error equation 

can be written as: 

A_xk ( + ) = xk --  2 k ( + ) 

= zla-k ( - ) - Kk{ TA~s (q~) Hk ( 2_k, 

Substituting Eq. (31) into Eq. (30), we can 

obtain the update covariance equation as follows: 

A_ r P k ( + )  = E l  xe(-- )Axk(-- ) - -Axk(-)z lx[(- - )  
T T H; K~ - 3x~. ( - )  v_rK[ + dx_k ( - )  

x ~ K [ -  K,H,  Ax~ ( - )  Ax_I ( -  ) 
T - KkVkZJXk ( - )  + KkzkAxg'(-) 

+ Kk{Hkdxk ( - )  zlx[(-)  H, + H~xk (--) 
v I -  H~2xk ( -- ) z[ + vkAx~'( -- ) I t [  

A] r r + vkv[-  v~z r -  vkn[-  nk xk ( - )  H~ 
- -  T '1 zks + n,z~]K[~ (32) 

where, H ,  denotes TABs(qL~)HK(2k, p), zk and 

Hk is a deterministic function, and if we neglect 

the third moment of  z/x~ under the Gaussian 

assumption. Then Eq. (32) can be rewritten as 

follows: 

P k ( + )  = Pk ( - - )  - P ~ ( - )  t ik lg~-KkHkPk(- )  
T T + K , { H , P ~ ( - ) H ~ + R , } K i  (33) 

where, Rk is the covariance matrix with colored 

noise due to nonlinearity of measurement. 

Let us define the cost function as in Eq. (34) in 

order to obtain the filter gain to minimize the 

update covariance of Eq. (33) (Bar-l tzhack and 

Oshman, 1 9 8 5  Lewis, 1986). 
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A------E[Ax~ (+) dx[(+) ] (34) 

After substitution of Eq. (31) into Eq, (34) and 
differentiating Eq. (34) with respect to Kk, and 
putting it to zero, we can obtain the optimal gain 

under the Gaussian assumption. That is, 

Kk-" P~ ( - )  tt[{H~P~ ( - ) Hr + Rk} " (35) 

Substituting Eq. (35) into Eq. (33), we can 
obtain the update covariance equation as follows: 

Pk( + ) -[I-KkH~]I~(-) (36) 

We can find that Eq. (36) has the same form as 
the update covariance equation of the linear 

Kalman filter, and there is no error due to trunca- 

tion errors because it is compensated by non- 
linearity of the system and the measurement. 
However, because the derived update covariance 
equation neglects the third moment, the proposed 
nonlinear filter becomes a suboptimal filter that 

does not contain truncation errors due to non- 
linearity. 

5. At t i tude  Algor i thm 

for N o n l i n e a r  Fi l ter  

The proposed nonlinear filter in section 4 

requires a lot of  computation because of an inher- 
ent nonlinearity and complexity of  attitude 

dynamics with coupled terms. We introduce here 
a computation reduction technique using the 
method of state division for a real time implemen- 
tation. We assume that the solution of the covar- 

lance Eq. (21) for propagation can be divided, 
according to the state x~ and state .z,2, by 

r P ~ ( - )  P~. ,~,(-)]  
(37) 

Substituting Eq. (37) into Eq. (21), we can 

obtain the individual form of the covariance 
differential equation. That is, 

t5~, ( - )  = 1/2.(2 (u - 2.,) f ~  (--) + I/2P~:, ( - )  

s2~(u 2 j - 1 / 2 F  ~_ P~ - (x~) x , ~ ( - )  
-- l/2Px,x= ( - ) / ' r  (2~) + I / 4 F  (s 
Q,l.,r (s + M  (38a) 

i~,:,:, ( - ) = 1 / 2 ~  ( u -  s  P~,.~ ( - )  -I /2Vi~,)  
p ~ ( - )  (38b) 

/ b  ( _ )  = Q, (38c) 

Inspecting the three equations in Eq. (38), we 
can find that the solution of  Pz2 can be obtained 
independently by Eq. (38c). Therefore, we can 

reduce computation time since the differential 

equations in Eq. (38) are solved using a sequen- 

tial method as follows; 
1) The solution of p~, can be obtained in- 

dependently by Eq. (38c). 
2) Substituting the solution of Eq. (38c) into 

Eq. (38b), the solution of P~x, can be obtained 

independently by Eq. (38b). 
3) Substituting the solution of Eq. (38b) into 

Eq. (38a), the solution of Pxl can be obtained 

independently by Eq. (38a). 
Also, we assume that Kk the filter gain in Eq. 

(35) is divided as in Eq. (38), and we subsititute 
Eq. (37) and Eq. (38) into Eq. (35). The 
divided filter gain equation is given by Eq. (39). 

[ I~ , ( - )  P~,x2(-)IH[[H~pk(_)H[+R]_ h~ 
Px,(-) 

(40) 

Inspecting Eq. (40), we can define Hk as in Eq. 
(41) since the measurement matrix tt~ in Eq. 
(40) consists of  only state x~. 

Hk-"[Hx, [0J  (41) 

Substituting Eq. (41) into Eq. (36) and Eq. 
(40), the divided filter gain and update covarian- 
ce are derived as follows: 

K~,=P.~,(-)Hf~H:~,1�89 (42a) 

K:,:, = PI,,,.~ ( - ) HL [It.,., P=, ( - ) ItI~ ~. R] -' (42b) 
P:~, ( + )  =Px,  ( - )  -K~,Hx, P~:~ ( - )  (42c) 
Px,x~ ( + )  ~Pa.,.,~(-) -Kx.,Hx,l~x,x,(-) (42d) 

P~, ( + )  = P:~ ( - )  -K.~H~:,P.~,~(-) (42e) 

Inspecting the individual state update Eq. (42), 
we can independently solve them because they 
represent each of the elements of  the divided state. 

Generally, computation of the matrix is propor- 
tional to its dimension cubed (Bar-ltzhack and 

Medan, 1983). The proposed attitude estimation 
algorithm is divided into two groups as in Eq. 
(38) and Eq. (42). If the dimension, n, of  the 
system can be devided into two groups of dimen- 
sion r and m which satisfy Eq. (38) and Eq. 
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(42), then the number of the reduced operator is 

3 ( r~m+rm2) .  Since n=6 ,  r----3, and m----3 in 
this paper for determining the attitude of the 

satellite, the proposed algorithm reduces the com- 
putation time approximate by 1/4 times. The 
proposed algorithm will be useful for a real time 
attitude estimation of a spacecraft since it requires 
less computing time compared with any existing 
nonlinear algorithms. 

6. Simulation Results 

Performance of the proposed attitude algorithm 
in section 5 is verified through a flow diagram as 
shown in Fig. 2. We assume that the orbital 
period of the spacecraft is 120 rain., the spacecraft 
has two star trackers, and the angular velocity of 
spacecraft sensed by the gyros is O.05deq/sec. 
Hence, co,=0, wz=O.OO5deg/sec, and co3=Odeg/ 
sec are used for the simulation. Recently the 
attitude sensors, when operating under high and 
continuous slew rates, acceleration, and jerk 

motions, may introduce significant errors because 
of coupled terms in the three axes of the space- 
craft. Therefore, to verify the performance of the 
proposed algorithm and the standard EKF, simu- 
lations are performed by varying the initial state 
values of the filters as in Table 1. Also, the initial 
covariance values corresponding to the initial 
state values are given as follows: 

�9 /Do=[ 6"4• 10-4L• 
d@o=5 ~ 

' L 0 
0 

5.3• 10-1113• 3 ] 

(43a) 

Table 1 Initial values of the filters. 

Rotation 
Quaternion error (dq) 

angle error 

5deg dq= (0.025, 0.025, 0.025) r 

t0deg ~q= (0.05, 0.05, 0.05) r 

15deg ~q = (0.075, 0.075, 0.075) r 

Cryro 
Data 

1"o'= s" ~s 
p'= sr ps  

P0(7,7) 

....... 

Quaternion and G-yro ~ 0(t0) 
Drift Propagation ~ /;(to) 

Propagation 6 Dimens iona l  
Error Covariance Matrix 

I P=S2"S" ] 

True Quaternion] 
[ Generation J 

#(-) 

K,, ~(+) 

|l 
Trace Pk(+) 

q 

~-) 
Star 

Quaternion and Gyro Tracker 

Drift Rate Update '-  Data 
..... V 

0 
)[ square Mean 
[ of Error 1 

Fig. 2 Simulation flow diagram for the attitude estimation. 
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The errors of  the quaternion for the E K F  and the nonl inear  filter (c~q~0 " 5 ~ ld' " 400). Fig. 4 

~r 10o. po=[2.6 • l 0-a/r4• 4 0 ] 
' 0 5.3 X 10-1113• 3 

(43b) 

[5.7 x ,0-314• 0 ] 
3~b~ 15~ " P ~  0 5.3 X 10-hA• 

(43c) 

T h e  gyro  noise  and  the m e a s u r e m e n t  noise  have  

been s imu la t ed  using R A N D  and  G A U S S  sub- 

rou t ines  that  genera te  u n i f o r m l y  d i s t r ibu ted  ran-  

d o m  n u m b e r s  a n d  G a u s s i a n - d i s t r i b u t e d  r a n d o m  

numbers ,  respect ively .  T h e  gyro  da ta  was s imula t -  

ed for a s a m p l i n g  t ime o f  500m sec  and  star  
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Fig. 5 The errors of the quaternion for the EKF and the nonlinear filter(~r ; 10% R'  ; 100). 
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The errors of the quaternion for the EKF and the nonlinear t]lter(~r ; 10 ~ R '  ; 400). 

tracker outputs were simulated at an interval of 

120 sec. The covariance propagat ion equations 

have been simulated with a step size of  500m sec 

using a four th-order  Runge -Ku t t a  scheme of  

numerical  integrat ion on the digital computer.  

The standard deviat ion of the process noise ~71 

was simulated for I arc: seeond / sec .  The stan. 

dard deviat ion of measurement  noise R '  was 

assumed to lie between 10 and 200 arc  seconds, 

The standard deviation of the drift rate noise ~22 

was assumed to be 4.7 • lO-Sarc seconds/sec .  

Both the E K F  and the proposed algori thm 
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Fig, 8 The errors of the quaternion for the EKF and the nonlinear filter(8~b0 " 15 ~ /?' ; 400). 

were simulated under  the given condit ions.  Since 

the quaternion estimations are random processes, 

100 Monte  Carlo s imulat ion runs were carried 

out for the est imation algorithms. Many simula- 

tion runs have been made and the results are 

smnmarized in Fig. 3 to Fig. 8. The root-mean~- 

square estimation errors of the quatern ion  against 

the star update are plotted in the figures. It can be 

seen from the figures that the proposed algori thm 

shows consistently better performance than that of  

the E K F  in all the ranges of  the initial state 

values and the covariance values of measurement.  
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From Fig. 3 and Fig. 4, it is apparent that the 

root-mean-square estimation errors of  the quater- 
nion are bounded by the measurement update, 

however, the root-mean-square estimation errors 
of the proposed algorithm are much lower than 
that of the EKF, and the convergence speed of the 

proposed algorithm is faster than the EKF. The 
initial value of the rotation vector error in Fig. 5 

and Fig. 6 is 10 deg, and the initial value of the 
rotation vector error in Fig. 7 and Fig. 8 is 15 

deg. It can be seen from Fig 5 to Fig. 8 that the 

performance of the EKF is not improved by the 
measurement update because of  the model errors 

in the EKF. But the proposed algorithm exhibits 
an improved performance since the covariance of  

the filter is compensated by nonlinearities in the 

system. 

7. C o n c l u s i o n s  

The attitude algorithm presented in this paper 
deals with the problem of high and continuous 

maneuver base motion in applications where an 
accurate attitude estimation is required. The non- 

linear filter for attitude estimation derived in this 
paper is accomplished by implicating the mean 
and covariance of nonlinearities in system and 
measurement. The derived nonlinear filter is a 

suboptimal estimator. However, the proposed 
estimator requires a lot of computation because of 
an inherent nonlinearity and complexity of the 
system model for attitude. For more efficient 
computation, this paper introduces a new attitude 

estimation algorithm using the state divided tech- 
nique for a real time processing which is devel- 
oped to provide accurate attitude determination 
capability under the highly maneuvering dynamic 

environment. The proposed estimation algorithm 
for spacecraft attitude does not produce any trun- 

cation bias errors, and it does not diverge because 
the covariance of the estimator is compensated by 

the nonlinear terms of  the system. Therefore the 
proposed estimator exhibits an improved perfor- 

mance compared with the EKF. 
To verify the performance of  the proposed 

algorithm with reference to the EKF, simulations 
were carried out for several initial values of the 

state and covariance and several measurement 

covariance. Simulation results show that the 

proposed algorithm had consistently better perfor- 
mance than that of the EKF for all of the cases. 
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